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THE THREE-NUCLEONPROBLEM:
1) Trinucleon Bound States
2) Trinucleon Interactions

J. L. Friar

Theoretical Division
Los Alamxa National Laboratory

Los Alamos, NM 87545 USA

ABSTRAC1

The assumptions underlying the formulation ●nd solution of the
Schr6dinger ●quation for three nucleons in configuration space ●re
reviewed, in conjunction with those qualitative ●spects of the two-
nucleon problem which ●re important. The geometrical features of the
pxoblem ●nd the crucial role of the angular mementum barrier ●re
developed. The boundary conditions for scattering are discussed quali-
tatively, ●nd the Faddeev-Noyes ●quation ia motivated. The method of
splines and orthogonal collocation are shown to provide convenient
techniques for generating numerical solutions. Properties of the ❑any
numerical solutions for the bound states ●nd zero-energy scattering states
●re discussed. The evidence for three-body forces is reviewed, ●nd the
resultn of the recent calculations including uuch forces ●re discussed.
The importance of ●lectromagnetic interactions in the three-nucleon
systems 1s motivated. Relativistic corrections and ❑eson-exchange currents
●re disrusaed in the context of “rules of scale”, and the pion-exchange
currentrn ~f no~relativistic order ●re derived. The experimental results
for trinucleon ●lectromagnetic interactions ●re reviewed, including recent.
tritium data. Conclusions are presented.
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IJmURB 10 TliINUCIZON BOUNDSTATES

I. INTRODUCTION
The four bound few-nucleon systems (2H, ‘H, ‘He, 4He) have played

● role in nuclear physics far out of proportion to their ●bundance on

●arth, ●nd their study constitutes one of the oldest and ❑oat important

subfields of our discipline. In one of the first review articlea (1)

treating nuclear physics, a separate section was reserved for the

three-nucleon problem. Since that time many such ●rticles have been

written.

The special importance of these four nuclei stems from the great

difficulty in solving the many-body problem. Special techniques exist

for solving that problem when the number of particles becomes huge, a

limit of no obvious relevance to nuclear physics. On the other hand we

can ●lso solve “exactly” (in the numerical sense) well-posed model

problems with fou. or fewer nucleons. Our lack of ability to construct

from first principles ● tractable liamiltonian for the interaction of ●

single pair of nucleons which describes ●ll the phenomena associated

with this system ❑eans that we routinely use semiphenomenological

Hamiltoniana, which incorporate physical constraints ●nd some para-

meters which ~re fitted to two-nucleon ●xperimental data. Thus, the

three- ●nd four-nucleon tyatems constitute ● special testing Sround for

new ideas ●nd concepts in nuclear physics, simply because we can solve

for their wave functions ●nd because their properties have uot been

incorporated into our Hamiltonian ❑odels.

Of particular importance to us here is the electromagnetic inter-

●ction, Like the few-nucleon problem, electromagnetism is a relatively

“clean” field, with conatraintt produced by fundamental principles, ●nd

with a mmall coupling conntant which makeo complicated physicml

proceooes contribute only weakly. Thus, electromagnetic interaction

reoults ●re “interpretable”, particularly if wave functions ●re

●ccurately known. This does not imply that our work is “cut ●nd dried”,

with little room for innovation. Quite to the contrary, because so

much Is &nown, electromagnetic interactions in few-body systems ●re

th~ place to look for “exotic” phenomena. Becauoe the technical

●spects of the few-nucleon problem tend to obmcure the many simple
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results, we will concentrate in the first lecture on understanding why

three-body calculations are done the way they ●re, in wha& sense they

●re complicated, ●nd in what aenat they ●re not complicated, In the

second lecture we will concentrate on ●lectromagnetic interactions

involving three nucleona and other topics, including three-body forces.

Although much of the modern work in this field ia formulated in

momentum space, most of the older work ●nd the work described in this

lecture were formulated in configuration -pace (CS). Many techniques

hsve been used to calculate CS wave functions, BeSinning with the
(1)●uuuat Rayleigh-Ritz variational principle . Why do we ●nd others

work in configuration apace? In our case the ●nswer in simple: our

physical intuition ●nd insight ●re greatest there. There ●re, however,

di~tinct ●dvantages to ❑omentum apace for certain problems, such ●s

relativistic treatments of few-nucleon aystema. In what follows we will

emphasize slmont exclusively the bound few-nucleon systems in con-

figuration ●pace, ●nd the ●pproach of the Los Alamoa-Iowa collaboration
(2)to eolving the Schr6dinger ●quation for there sy~tema .

11, QUALITATIVEASPECTS

No dxocussion of the three-nucleon problem is complete without ●

schematic diecuosion of the two-nucleon Hamiltonian, Heny of tha de-

tailed quantitative featurem are irrelevant, while a few aeeminSly

unimportant qualitative featurnn determine moat of the trinucleon

properties,

The key underlying aommption it that few-nuc’km dyuamics is non-

relativietico Thio important simplification relies on the fact that

typical values of internal nuclear momenta, ~, ●re 100-200 HeV/c,

●nd thus (v/c)* ■ (~/Me)* for ● nucleon of mesa llca=939 HeV is one-few

percent. Since (v/c)a $ives the scale of relativistic corrections,

thit astimate would indicate that a nucleuo is largely nonrelativistic.

The ●r$umont hides the fact that short-ranse potentials can be very

mtront ●nd induce local ❑omenta which *r. corretpondin$ly laruo; the

●stimate nbove should only b. interpreted ● “in the ❑esn”, ?loreover,

our potential ●odels “hide” the effect- of relativity in the phenom-

enolo@cal pmrto, because parameter- ma fit to data,
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There ●re three salient features of the two-nucleon potential

which drastically, and unfavorably, affect our ability to solve the

few-nucleon Schr6dinger equation. These are:

(1) Forces between like nucleons (e.g., pp or nn) are weaker
than the forces between unlike nucleons (rip),

(2) The two-nucleon spin-triplet potential contains a strong
tens>r force which couFles neighboring orbital waves;

(3) The short-range force ●xhibits very strong repulsion,
which makes the probability of nucleon-nucleon overlap
●t short distances very small.

Without these complications the few-nucleon Schr6dinger ●quation is

quite easy to solve. Feature (1) induces important spin and isospin

correlations in the wave function. If the forces between all particles

were identical, only a single (different) scalar function of the

particle separations would describe ●ach of the few-nucleon systems.

With ● tensor force present, the deuteron wave function has a tensor

(d-wave) component, ●s do the triton ●nd a-particle, which greatly

complicates solving the Schr6dinger ●quation. A strong short-range

repulsion produces “holes” in the wave function. These holes must be

●ccurately generated in ●ny solution, which is thus rendered con-

siderably more difficult.

In addition to these qualitative ●spect~ of the nucleon-nucleon

force, we note ●lso that the odd-p~rity nucleon-nucleon partial waves

(eo80, ‘Pl, ‘P ~,1,2] ●re relatively weak, ●nd we will see later that

they play ● very small role in the triton.

A few basic principles motivate the procedures used to solve

n’~erically various three-body problems. These are:

(1)

(2)

(3)

(4)

Nuclei (including the triton) ar? weakly bound, ●nd
●verage momenta are consequently small compared to the
nuclaon mass;
In the triton the ●verage momentum is comparable to the
inverse of the radius (R) ●nd consequently the ●n8ular
momentum barrier suppresses hi8h partial wm’es of the
nucleon-nucleon force;
l.hlike the caae of heavy nuciei, the Pauli principle
doesn’t play a p~rticularly lar8e role;
The details of I!L? force ●re relatively unimportant in
the overall binJ: ‘g, clthouAh they can severely com-
plicate achieving ● tiolution.
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As we previously discussed, a nonrelativistic treatment of the triton

should suffice, as indicated by (l). One estimate of the ●verage

momentum is ~ = ~~ ~ PK, where Eb = 8.5 HeV is the binding ●nergy,

and consequently, p S 90 MeV/c. A typical trinucleon size ia 2 fm, so

that ~R ~ 1. Becauae Bessel functions of ●rgument z and order Q peak

for z > 2, it is clear that the angular momentum barrier will greatly

suppress orbital angular momenta greater than 2

111. GEOMETRICALASPECTS

The geometry of the tritcn illustrates the

solving the Schr6dinger ●quation for the triton

deuteron. The deuteron is describes by a single

in the triton.

greater difficulty in

compared to the

vector ~ separating the

nucleona, ●nd only ita magnitude As relevant for a description of the

two scalar functions, u(r) and w(r), which determine the s-wave and

d-wave parts of the wave function. Figure 1 shows the triton, where we

have arbitrarily numbered the nucleons. Three points define a plane

and thus only two vectors, ;I, and ~1, describe the system. Becauae

the orientation of the plane is arbitrary, only three independent

interparticle coordinates (X1, yl, el) are r?quired to specify the wave

function. Our choice of vectors ia ●rbitrary, however, since any set

of the Jncobi coordinates formed from the nucleon coordinates ; ~ (i, j,

k cyclic) is adequate:

+
=;-;

‘ijk’
(1)

;i -; .= +Gj+;k) ~ (2)

Clearly the auma of the ;i or ~i vanish and they ●re linearly

dependent. Traditionally, the set (~1,~1) is relabeled as (~,~),

where ~ ●nd ~ ●re denoted the “interacting pair” ●nd “spectator”
(3)coordinate, respectively .

Group theoretical methods
(4)

●re used to claseify in a well-

defined way the wave function components which can occur for the

positive parity, spin-i trinuclecms. Moat of the important qualitative

●apect~ of this scheme ●re rather obvious, however. Like the deuteron,

the principal triton wave function component is s-wave ia character.

However, becauae there are several coordinates describing the problem,
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thia can be further broken down into three distinct categories: (1)

the S-state, completely symmetric under the interchange of spatial

coordinates (i.e., the ~i); (2) the S--state, which has mixed opatial

s~etry (neither aymaetric nor antiaymetric); (3) the S’”-state which

haa upatial ●ntiaymetry. The last state has negligible size because

the antia~etry requires very large momentum components, which are

lacking in the 8round state, and because it is 8enerated by the weak

odd-parity nucleon-nucleon forces. The S’-state vanishes when the np,

nn, and pp forceo are identical, and for this reason it can be viewed

●s ● space-isosplri-(spin) correlation in the 8rOU.IId state. Its

physical importance will be discussed later. The S-wave couponento are

clearly spin doublet, since the trinucleons have spin #; they are iso-

doublets if we i8nore the Coulomb force in aHe. There are also three

independent spin-quartet D-wave components, analogous to the deuteron

came. Unlike the deuteron case, it is possible to construct a positive

parity vector (~ x $), ●nd this leads to three quartet ●nd one doublet

P-state components, which are \(Ly small. AddinS ●very~hing to8ether,

there ●re 10 S-, P-, ●nd D-state components, specified by 16 scalar

famctions.

The Schr6din8er equation for the deuteron involves 2 coupled

●quations in me variable (r). The Schr&dinger ●quation for the triton

ia ● set of 16 coupled partial differential equations in 3 independent

variablea. This lar8e number of equations ❑akes the problem rou8hly

equivalent to # ein81e 4-variable problem, which would require heroic

effortm, even for modern aupercomputers. The way to circumvent this

seemingly intractable nituation ia to use our knowled8e of the physics

of the problem: the angular ❑omentum barrier ouppreaaea ❑any of the

problem’s complexities.

Fi8ure 2 ~hows two of the euer8y scaler of the triton. The upper

graph illustrates the npin- ●nd isospin-independent MT-V nucleon-nucleon

potential model (5) , plotted versuu nucleon-nucleon separ~t.ion$ x? and

for comparison, the centrifugal mart of the kinetic energy (for 2=2):

p~2(A+l)/mx~. We aee that the latter dwarfo the potential ener8y.

Clearly, for hi8her values of A this mismatch is ●ven greater. The

implication for the bindin8 of Lhe triton are iouoediate: potential
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energy contributions for the higher nucleon-nucleon partial waves

rapidly decrease as 2 increases. ~; can easily Bee this by assuming a

spin- and isospin-independent potential V23(X) between nucleons 2 and 3

and expanding this in a partial-wave series in both ~ and $:

V23(X) = Z la>V23(x)<al ,
a

(3)

where

la> = [YE(fi)EYR(~)10 , (4)

and the “channel’’-label u is simply g in this case, This series i-s

much simpler than the general case, because we have assumed the ~ame

potential in ●very partial wave. Taking the expectation value of the

potential between all three pairs of nucleons gives

<v> = 3<V23(X)> =1 <Vg> ,= 3jjx X2CQ(X)V23(X) ~ (5)

where the partial-wave projected correlation function is

CA(X) =Jl<alW12y2cly . (6)

Only the completely space-synsnetric S-state occurs in the wave function

for this problem, and only ●ven values of 2 are nonvanishing because of

this . The lower plot in fig. 2 shows the first four Cg’s, which

rapidly decrease in size with increasin8 1. The dominant CO(X) is

small ●t the origin because of the repulsion in V(x), while the
2fi

remaininb Cg(X)’ll behave as x for small x. This ❑eans that only

increasingly larger values of x contribute to the intearand in ●qn.

(5), which are suppressed by the finite ran8e of the force. The values

of <Vg> (for Q = 0, 2, . . . . 10) for this simple potential model are

given by [-36.6, -.163, -.019, -.002, -.0004, -.00008] MeV, dramat-

ically illustrating the ra?id conver~ence ●s 2 increases, Clearly it

should be sufficient to re~trict Q to 4 or lese, We will aee later that

this conver~ence rate ●lso ●pplies to ❑ore reslistic potential models.

We note that the sum of ●ll the Cl’s is the usual two-body correlation

function, C(x).
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By expanding the potential in a series and then truncating the

series after a reasonable number of terms, we have in effect reduced

the problem to solving a set of coupled equations (for the partial

waves! in two variables x and y, which makes the problem tractable. A

good estimate of tl.e time scale for numerically solving the deuteron

problem, starting from scratch, is one or two months. The scale for

the triton bound state is perhaps two years! The problem is still very

difficult, and requires a substantial connnitment of personal and com-

puter time. For future reference we note that all calculations using

the Faddeev approach (to be described next) decompose the nucleon-

nucleon potential into partial waves and solve that (truncated) problem

“exactly”.

IV. BOUNDARYCO~ITIONS ANDTHE FADDEEi-NOYESEQUATION

We wish to solve a partial differential equation, the Schrodinger

●quation, for the triton bound state. It is sometimes forgotten by

those who don’t perform numerical calculations that such solutions

require the imposition of well-defined boundary conditions. Simple

bound-state problems only require the imposition of finiteness require-

ments for the wave function at the origin and at asymptotically large

distancea, where the wave function vanishes exponentially.

The scattering problem is ❑ore complex, and finiteness alone is

‘6) showed that the three-not enough. Years ago, Foldy and Tobocman

body Lippmann-Schwinger (LS) equation (the Schr6dinger equution

rewritten as an integral equation) for scattering has no unique solu-

tions, ●ven when outgoing scattered waves are specified in the usual

way. Even the two-body Lippmann-Schwinger equation has no unique

solution, without further subsidiary conditions, if the the problem is

posed in a particular way! The problem we pose is: what is the out-

8oin8-wave solution for two nucleons with a total ener8y of 20 MeV?

This is a “trick” question, because we have deliberately not specified

the center-of-mass (Cti) motion of the two nucleons. As stated, an

●rbitrary linear combination of wave functione for a deut.eron with 22.2

Hell CM ener8y, two nucleons in a lSO threshold state with 20 MeV CM

eneruy, ●nd two nucleona with an internnl ener8y of 10 MeV ●nd 10 tleV

CM ener8y solves the problem. Trivially, we can avoid the problem by
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working in the CM frame, which fixes the relative two-nucleon energy.

Unfortunately, even in the CM frame of the three-nucleon system this

does not suffice, since the recoil of a third nucleon can compensate

for the CMmotion of the remaining pair in any state of internal motion

commensurate with conservation of energy. Because of this, complicated

phenomena are possible, which makes the ad hoc imposition of boundary——
conditions a dubious exercise. An incoming plane wave for a proton-

deuteron system (pal) can scatter directly to a pd final state, or break

up into a ppn final state, or the initial protoc can pick up the

neutron in the deuteron and that deuteron ca~ escape. These many

physical channels are not orthogonal nnd specifying outgoing waves is

not enough. In the jargon of few-body physics, there are “disconnected

diagrams”, “dangerous &functions”, “noncomPact kernels”, and

“nonunique solutions”. All these diseases are merely symptoms of the

original problem.

Of particular importance is rearrangement, such as the neutron

pickup example described above. We write the Schr6diuger equation in

the form

[E-( T+V12+V13+V23)]W= o , ~ (7)

1

where T, E, and V
ij

are the kinetic energy, total ●nergy, and potential

●nergy for the pair (ij), respectively.
lf both ’23 and ’13 can

supporu a deuteron bound state, an initial plane-wave state of nucleor.

1 and bound nurleons 2 and 3 [denoted (1;23)] can asymptotically become

nucleon 2 plus a bound (13) pair [(2;13)]; the converse is also true

and both wave functions contain both physical processes. The difficulty

is that while the LS ●quation specifies that the (1;23) configuration

has an incoming plane wave and outgoing spherical wave, it does not

rule out incoming plane waves for (2;13). In order to achieve a unique

solution the LS ●quation must be supplemented by additional homogeneous

equations(7’8)p which rule out unwanted incoming plane waves.
(9)Faddeev provided the means to circumvent this dilennna ,

Although Faddeev’s procedure waa developed in momentum space, Noyes (lo)

later cast that work into a physically ●quivalent configuration space

form. We arbitrarily write



where the variables (; ~ ) are the Jacobi coordinates defined earlier,i’ i
and the function Q in eqn. (8) is the same for all three terms. The

original Schr6dinger equation

(E-T-V23)01 = v~3($2+*3)

(E-T-V13)~2 = V13(V1+*3)

(E-T-V12)$3 = V12(01+*2)

becomes three separate equations

t (9)

D (10)

. (11)

Clearly, ●qna. (10) and (11] are simply permutations of (9), and we

need solve only (9). Since that equation involves only V23( and not

V13) the problem of the rearrangement reacticu has disappeared for $1.

It is contained in *2. Oy this clever mechanism, Faddeev showed that

we only nend to specify explicitly the much simpler boundary conditions

for $1, rather than for V. Note that the sum of eqns. (9), (10), and

(11) reproduces ●qn. (7).

This is seen most clearly in fig. 3, where the regions of interest

for the variablea x and y are illustrated. The configuration (1;23)

corresponds to an asymptotic state with p, and X<xd, the physical

●xtent of the bound pair (23), and is denoted the “deuteron strip”.

Rearrangement corresponds to small x2 = 1~1-~31 (i.e., a bound atate in

(13)) and this occurs when e = O, and y= x/2 or 68 = 30° in terms of

the polar coordinate

x = pcose” , (12a)

Y &
3= ~ sine’ . (12b)

In complete analo8y with the two-body problem, we can impose boundary

conditions moat eauily for the reduced wavefunction

o~=m~ , (13)
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by enforcing 01=0 along x=O and y=O, and outgoing wave boundary

conditions along p=pmax”
These Fhysical considerations can be seen graphically in fig. 4

and fig. 5 for 0=0, which depict wave functions for the scattering of

zero energy neutrons and deuterons in the quartet spin state. The

smooth function ~1 in fig. 4 has structure only along the deuteron

atrip, while fig. 5 depicts V3, a component of the total wave

function V, which has structure along the deuteron strip and a ridge

with “wings” along e-= 30°, which is the outgoing wave in the rearrange-

ment channel. It is clearly a simpler procedure to solve for ~1 than

v , which has much more structure.
3

The bound-state problem (3) has much simpler boundary

conditions: we need only make the wave function vanish for some large

P=Pmax “ Nevertheless, the Faddeev motivations for the scattering

problem work equally well for the bound state, and we anticipate that

the Faddeev wavefunction $1 will be smoother and ●asier to model

numerically than W.

Having ❑ade the decision to partial-wave project the nucleon-

nucleon force, it ia necessary to determine the consequence of this for

the Faddeev-Noyes equation. For simplicity we assume a force which is

independent of spin and isospin and acts only in the s-wave. In terms

of our previous discussion, such a force looks like IO>V(X)<OI, where

the projector 10> refers to s-waves. This produces, with E=ti2K2/M,

d +*. u(x) +X2 $(X,Y) =U(x)@p ~ $(X2,Y2),
8%2 48y2 22 (14)

where U(x) = MV(X)/)12, p=cose, and $(x,Y) = ;f;w$+~YdJ)” Note that

@ does not depend on p; it is completely independent of e. Moreover,

for the s-wave force chosen, all higher partial waves of $1 must

vanish, because V vanishes for those waves, ●nd therefore W(x,y,p) =

$(X?Y) + 0( X2,Y2) + $(x3,y3)o This is an extremely important result,

since all of the ●naular (p) dependence in W comes from the permuted

te~s} $(X2~Y2) and I$(X39Y3), ●nd the computation of a 3-variable

function has been reduced to one of only two variables. When many
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partisl waves are computed, one has coupled equations in the two

variable- x ●nd y. Nevertheless, the angular momentum bar~ier makes

the required number tractable, and the calculation poaeible.

v. NUMERICAL190DELLING

We still must make a choice of numerical met-hods in order to solve

the ●quations. A technique which has proven exceptionally powerful in

modern en8ineerinU ●pplication in the finite ●lement ❑ethod, ●nd it-

‘12). Fi8ure 6 depicts at the top ●variant, the method of ●plinea

function which we wish te ●pproximate for computational purposes,

between the points XO ●nd X4, ●nd for demonstration purpoaea we choose

to do EO by dividing the dietance into 4 equally spaced reaiona or

intervals. The finite element ❑ethod consists of ●pproximating the

function in ●ach internal by ● (different) polynomial of order N ●nd

forcing the function and ita first m derivatives to be continuous ●t

the “breakpoint” betwaen intervals. For definiteneaa we will chooee

cubic aplines (N=3) involvin8 4 parameter, ●nd force the function and

its fir~t derivative to be continuous. There ●re ● total of 16

par=eters, snd 2 imposed conditions ●t each of 3 breakpoint, lcavins

10 free parameters, The function is chosen to vaniah ●t the ●nd

points, leaving 8 parametara which are chosen co that ●t two

“collocation” points (indicated by x’s) in each of the 4 intenals the

function ●grees exactly with the function we ●re modellin8. If we ●re

solving ●n equation for this function, we force the ●quation to be

exactly matimfied ●t those points.

h ●l,ternativ~ scheme is to une aplines, which eliminates much of

the labor. The finite elements in s given intenal ●re 8rouped with

those in ● nei8hborin8 interval, which ●re then,,overlapped ●s shown in

the middle of the fiSure. That is, at uny point, x, the function ia

approximated a- the aum of two overiappin8 functions, ●ach defined in ●

double inte~al. Tbeae apline functions and their first m derivatives

●re required to vaniah at the right ●nd left ●nds of the double inter-

val ●nd to be continuous at the middle boundary. For our caae (N=3 and

m=l) the 8 finite elemant parameters for ●ny double interval ●re

reduced to two by these ●ix conditions. We have 8raphed these

(Hemite) splinea ●a even and odd functions in the double inte-al, and
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.

the remaining two parameters ●re simply the overall etrengths of each

of these functions. The beauty of this scheme is that the use of over-

lapping splines now Guarantees that the function ●nd its firnt

derivative are everywhere continuous without nny extra work! The

boundary conditions ●re trivially aatiofied by making the even function

in the end Intervalc vanish, ●nd the remaining 8 parameters in the 5

overlapping cpline functions ●re determined ●t the collocation points,

•~ before. The strength of this method is that the overall number of

unknownIB has been reduced to the minimum before we even set up matrix

equations.

The orthogonal collocation ❑ethod allowe one to choose the col-

location points so that the power of Gauss quadrature ●nd splines can

ba combined (13). If we were to perform ●n integral over the function in

the figure, ● natural w-y to do this would be to integrate between

breakpoints ~ml use ● Gauss quadrature formula in each intenal.

Usin8 those quadrature points as collocation points constitutes the

method of orthogonal collocation, which substantially improves rates of

convergence when colvin~ equationa using uplines.

Becauee splines ●re local functions, separately defined in each

double interval, the collocation conditions couple splinet from

neighboring intervals only. The cumplete set of ouch conditions for all

parameters (8 in our example) constitutes ● matrix equation, ●nd this

❑atrix haa ● very special form because of the locality; it is ● “band”

❑atr{x, with moot of the elements zero, ●s shown ●t the bottom of fig,

6. Such matrices ●re mu:h easier to invert than dense matrices, and

should be preserved, if possible. In order to deal with the angular

integral in eqn. 14, we transform from (x)y) coordinate to the polar

coordinates (p,e”j, The integral destroy- the double band structure in

x ●nd y; polar coordinates preserte this structure in the variable p.

There are a numbez of important ●dvantages which accrue from uning

aplines to ❑odul ● function: (1] The apline ●pproximant and a

specified number of derivative ●re ●utomatically continuous; (2) The

tplines automatically provide an interpolating functiou ●t ●ny point;

(3) They I.ead to ● band matrix; (4) They are “optimally” -mooth; (5) It

is ossy to chante from the equally -paced intomals of our ●xmple to



t

any desired distribution; (6) The oplines are easy to program on ●

computer; (7) Boundary conditions ●re ●asy to impose; (8) The approxi-

meats exactly satiafy the constraint equation~ ●t the collocation

points; (9) Piecewise local functions such ●s splinee do not propagate

●pproximation errors, ●RI global functions do; (10) The relative

●ccuracy of the wave function ●nd ●igenvalue should be comparable. We

●lso note that the uoe of overlapping double intervals corresponds

closely to one derivation of the powerful Gregory’s integration rule

from Slmpaon’e integration rule.

There is little difference in principle between solving ●qn. (?4)

for ● mingle nucleon-nucleon (NN) partial wave ●nd using many partial

waves. The nize of the matrices becomes much larger, and the matrix

bookkeeping becomes very tedious and intricate, In general for each

nucleon-nucleon partial wave, there ●re two spectator partial waves

●ssociated with the two spin states of the latter, except for total

●ngular momentum, J, equal to zero, which 8enertiten only one. The four

NN partial waves (SLJ) for each J (1JJ,9JJ,SJ-1J,3J+1J) thus generate 8

trinucleon channela,-except for J=O, which has only two, ●ssociated
1with lSO ●nd ‘PO. AU we indicated ●arlier, the So ●nd %1 wavefi

should be dominant, ●nd we must ●lso include the aD1 wave, which is

strongly coupled by the tennor force to the ‘Sl wave. This combination

is the standard 5-channel calculation (all positive-parity NN waves

with J:l), The 9, 18, 26, ●nd 34 channel cases correspond to positive

parity waveo with JS2, all wavea with JS2, ponitivt parity wavea with

3SJS4 wave-, ●nd ●ll waves with J$4, respectively.

VI. RESULTS FOR TRINUCLBONBOUNDSTATES

A brief s~ary of results (14) for the Reid Soft Core ’15) (RSC),

’17) [SSC(C)], and Parim (18)Ar80nno(16) V14 (AV14), Super-Soft-Core(C)

potential ❑odels is given in Table 1 ●m a function of channel number.

Several conclusions ●re obvious: (1) The S-chmnel approximation gives

momt of the bindin~ (within .2-.3 MeV); (2) The ne~ative-parity NN

wave- don’t have ● large effect; (3) The bindin8 is roushly 1 MeV below

.xp@riment; (4) The point-nucleon rmt charge radii (i.e., the proton

radii) for ‘He and aH are laraer than experiment. Because the

positive-parity waven dominate, thin table deem’t demonstrate the rate
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of convergence of the partial-wave series. This is ohown in Table

for the RSC 34-chmnel cane, where W> ia broken down into contri-

butions for fixed J and fixed parity. All but 1% of the total poten-

tial energy (indicated by I in the last column) ia generated by the

first 5 channels, and most of the rest from the remaining poaitive-

parity waves. The small ne8ative-parity hl forces Sive 200 keV ❑ore

binding, which is not obviously reflected in Table 1 (compare 18

channels to 9 channels). The reason is thst the negative-parity force-

couple directly to the mall components of the wave function ●nd this

leada to nearly canceling contributions from fir-t- and second-order

perturbation theory. First-order perturbation theory works well for

c1l the other ●all force components,

The rrobabilitiea of the important SO- ●nd D-state wave function

components are ~mall. The D-otate probabilities for the triton ●re

very nearly 3/2 times the correnpoadlng D-state probabilities of tie

deuteron for ●ach potential model.
I

Ttble 1. Bindin8 ener8ieu, point char8e ma rmdii in’fm, ●nd pe?-

force mode~,~~?)fmction co~onents for “.rion. two.~o~y

centagea of w

-E (MeV)
<r2># <r2>$ p pD

He so

Rsc 7.02 7.21 7.23 7.34 7.35 1.85 1.67 1,40 9.50
AV14 7.44 7.5; 7.s7 7.67 7.67 1.83 1.67 1,12 8,96
S8C(C~19)7.46 7.52 7.49 7.54 7.53 1.85 1.68 1.24 7.98
Paris 7.30 7.38

Expt , 8,48 1.69(3) 1.54(4) -- --

Table 2. Potential aner8ies (in !leV) for the RSC 34-chsnnel case
broken down accordin~ to J (total nucl~on-nucleon an8ular
momentum) and parity, ●nd the kinetic energy for comparison.

J

<vJ> -13,729 -43.647 -0.435 -0.115 -0.020 -57 m946

<v;> -13.553 -43.874 -0.188 -0,117 -0.014 -S7 ,746

<v;> -0,176 0.227 -0.247 0,(!02 -0,006 “0,200

<T> 50.600
a> -7.345
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Clearly there is underbidding, ●nd the radii ●ren’t correct either.

The latter snd other importmt observable depend on the binding

energy, ●nd nince that is wron8 the obsemablea can’t be correct. In

order to inventi8ate this problem which haa plagued us for & decade, we

●nticipate some of the results of the next section, and introduce ●

three-body force to increane binding. We don’t rived to know what it ie

●t this ataae. Our study of these observable will allow us to gain ●

qualitative understanding of them at the same time.

Although a wide variety of bound-state calculations have been

performed during the previous two decades for ● variety of potential

models, many produced only bindin~ ●nergies ●nd no wave functions, and

othern required ●pproximation whose reliability wao difficult to

The recent studied of the Los Alamoa-Iowa group have●oseas.

produced a large number of numeticaL.y accurate triton wavefunctions

for four different two-body potential models in combination with

several different three-body force model-, each calculated for various

numbers of channelc. Although there is no guarantee that these model

combinations accurately describe nature, the aolutiona ●t least

incorporate the correct qunacum mechanical constraints. Moreover, the

bindins energies for the net of ❑odels extend from below to ●bove the

physical binding ener~y of the triton. Thin provides us for the first

time with the opportunity to investigate how t variety of important

8round-state obaervables depend on the binding energy, ●nd whether

there it any “true” model dependence as well.

What are the important Sround-state properties, besides the

binding ener~y? A list of the ❑oat comonly calculated ones would
h +include the (point) char8e radii, <ra>He and <rg>H, tho probabilities

of the variouo wave function components (which ●re not measurable (21)),

the Coulomb energy of ‘He, Ec, the magnetic momenta of aHe and aH,

th~ir asymptotic noms (sizes of asymptotic wave function compouent~),

●nd tha ~-decay matrix element of aH. The ma8netic ❑oments depend on

meton-oxchan8e current- and on the S’- ●nd D-rotate probabilities, P8’

●nd PDj ●m doot the fbdecay ❑atrix element; we will diocusu them later.

Tha ●qmptotic noram depend on binding, but this has not been ●ssestecl

in detail yet. The radii ●nd Coulomb ●ner~ depend sensitively on the
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binding enargy, and calculations of these obaervablea which use models

that underbind will produce inadequate predictions. We asaesu the

otatua of theme important physical quantities below, together with

simple qualittitive arguments that ●ccount for our concluaione.

For pedagogical purpoaea, the difference of the ‘He ●nd ‘H charge

radii cm be understood in terms of the oversimplified pictures in fig.

7. The sketch at the top depicts a schematic ‘He when the nucleon-

nucleon forces between all pairs are identical. This is represented by

an equilateral triangle configurations with shading depictin~ the

protons. The charge or proton radius, Rp, measures the integrated

probability of finding ● proton ●t a distance r from the center-of-

maan. In this simple ●xample, the proton, neutron, ●nd mans radii ●re

all the same, When the forces between pairs ●re different, the appro-

priate pictures for ‘He ●nd ‘H ●xe those of fig. (7b) ●nd fi~. (7c).

The up iorce~ ●re stronger than che M or pp ones (only the up ayatem

haa ● two-body bound state) and this ●llows the pr~tona in ‘He ●nd the

neutronrn in 3H to lie further fro~ the the center-of-maac than their

counterparts (e>600). Tine resulting isoacelea configuration is

reflected in the ●ppearance of ●n S’-ntate, which directly measures the

isoscelas-equilateral difference, ●nd in the fact that Rr for aHe

incraases, while that of ‘H decreaaes, and hence <ra>He +* > crbH,

irrespective of ●ny pp Coulomb force in ‘He.

These arguments can be made quantitative 4Y decomposing the mean-

square-radius in impulse approximation into Iaospin component
(22) :

the imoscalar part <r2>t ❑irrors fiu. (7a) and ia determined by mums of

squarea of wave function componentom The itovector component contains

one part proportional to the i-oocalar component and another part

laraely determined by the overlap of the S- ●nd S’-state., which we

denote <r2>v (v does ~ mean iaovector), ●nd determines the difference

between ‘He ●nd ‘H. One finds for ‘He (2=2) ●nd ‘H(Z=l), with upper ●nd

lc-”er aigna, respectively,

z<r~>m Z<ra>m & <r2>
v’ (15)

These quantities have very different behaviora. Radii in Ueneral ●re

aensitiva to the asymptotic parts of the wavefunction. If one a-mumes
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(3)that the entire wavefunction La represented by the ●symptotic fom ,

Nexp(-Kp)/p5’2, one finds that

(16)

*Fiaure 8 shows the results of calculating <r2>~, and <rz>v, together

with the experimental data corrected for the nucleona’ finite *ize(2).

The fit to the isoscalar points IS accurately represented by .8E~”5,

indicating that our mimple ●rgument was ●ssentially correct. The

difference radium ia fit by .14E~”9, and this different behavior

reflectt different phyoics. Clearly , the amount of S’-state plays ●

significant role. The percentage of St-state is plotted versus binding
-2*1ener~ in fig. 9, ●nd the fit varies as EB This decrease is

expected, becnuse ●s binding increases only the ●verage force is

iqortant, ●nd the np-nn difference is less important. In a simple

harmonic oscillator description, the S’-state is given in tema of
“2excited state confi~uratious, which decrease ~E
0

ss the oscillator

●pacinu Increassr with bindin8. Finally, the 3He and ‘H reoults are

shown in fig, 10. If the small discrepancies between theory and

●xperiment ●re real, they probably reflect a small breakdown of the

impulse ●pproximation.

The Coulomb force Vc(x) between protons in ‘He is quite weak and

can be ●ccurately treated in perturbation theory. The second-order

(23) is estimated tobe--4 keV, compared to ● sHe-~HCoulomb effect

binding energy difference of 764 keV. Since Vc * I/R, schematically,
-5 *●nd since R u EB , we expect Ec to scale rou8hly ●s EB. A better

description is ●vailable, however, ifwe utilize fi8. (7a). In this

schematic ‘He the dititance x between

Ec ■ <Vc(x)> = a<l/r>/~~, where a is
(24)

Consequently ,

protons is given by ~~r, ●nd thus

the fine structure constant.

(17)

‘22),~(r), andwhore we have ●dded the effect of nucleon finite sise

written the matrix element in terns of the scalar ●nd difference
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.
charge densities. The accuracy of this hyperspherical approximation 1s

demonstrated in fig. 11. Although g priori a very implausible
H●pproximation, Ec overestimates Ec by only 1 percent. This is an

important result, because the charge densities are ●xperimentally

measurable. Using these data
(22) one finds Ec = 638 t iO keV. This is

significantly less than the binding energy difference and reflects the

existence of nomegligible charge-symmetry-breaking forces other than

the Coulomb interaction.

VII. CONCLUSIONS

Rapid and significant advances have been made in the few-nucleon

problem recently. Many aspecta of the hound states, including the

Coulomb energy and charge radii, are now fairly well understood.

Although we have concentrated on the trinucleon bound states, the

continuum is also important. Photonuclear reactions necessarily break

up the triton ●nd 3He, and this is an important area of study. The

continuum problem above breakup threshold is much more complicated than

the bound-state problem, because the boundary conditions ●re difficult

to implement in a tractable way. Nevertheless, the future of chree-

body physics lies in this regime.
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LECTURE2. TRINUCLEONINTERACTIONS

1, NONTRADITIONALNUCLEARPNYSICS

For much of its 50 year ●xistence nuclear physics has made tacit

assumptions in ita ●pproach to problem solving. These assumptions,

which comprise what I call traditional nuclear physics, are:

1) Nuclei ●re basically nonrnlativistic ●nd weakly bound, with

●verage momenta be~r typically 100-200 MeV/c;

2) The binding of nuclei in produced primarily by two-body forces,

which act only between pairs of nucleons at a time;

3) Only nucleon degrees of freedom tre important, ●nd nucleon sub-

structure ●nd meson or quark degrees of freedom can be ignored.

Although there were some early challenges to this approach to our

field, it waa only in the late 1960’s that a serious, concerted effort ‘

was made to find exceptions to these “rules”. The problem waa that

traditional nuclear physics was reasonably successful. Moreover, the

curse of nuclear physics ●nd related fielde is our inability to

●ccurately solve the ❑any-body problem beyond the mean-field approxi-

mation, which meant that disagreements between theory ●nd experiment

were difficult to interpret. Were they due to poor wavefunctions, or

to a poorly understood reaction ❑echanism?

The importance of the few-nucleon problem can be understood in’

thim context. At the same time that ❑odern intermediate energy (i.e.,

nontraditional) nuclear physics was being developed, Sreat strides were

being ❑ade in the few-nucleon problem. The early calculation by Tjon

●nd collaborators(5) ●nd by Kalos(25) used modern computational methods

to solve for bindina ener@es &nd wave functions; the latter were then

●vailable for computins electromagnetic matrix ●lements. This ~S still

the strength of the field. We can solve the SchrGdinger equation

“exactly” for wave functions, and use the wave functions in calcula-

tions of electromagnetic processes, which are the ❑ost “interpretable”

of ●ll the types of reactions available to nuclear physicists. This
#

is tlso our chmllenge for the next decade.

We have already estimated the size of relativistic corrections to

be on the ordar of one to a few percent. The best evidence fo:
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relativistic corrections in low-energy nuclear reactions occurs for
(26)

deuteron forward photodisintegration , where the proton is detected

at 00. This configuration greatly suppresses the dominant non-

relativistic electric dipole (El) react{.on, so that a nominally one

percent relativistic correction becomes a 20 percent effect! ?his

points out one of the difficulties in challenging traditional nucleer

physics: novel reactions or special regimes of known reactions ❑ust be

sought in order to suppress the “ordinary” physics. The importance of

relativistic ●ffects will arise again in the context of t&iree-nucleon

forces.

One of the biggest success stories in all of nuclear physics

during the decade of the 1970’s was the convincing demonstration of

meson degrees of freedom in electromagnetic reactions, and in

particular, of the importance of the pion in exchange currents. Much

of that story revolved around the threshold deuteron photo- and

●lectro-disintegration and np radiative capture, all of which are

(27) calculated themagnetic dipole (Mlj processes. Riaka and Brown

dominant pion-exchange processes and showed that the long-standing 10

percent discrepancy in np zadiative capture could be lar8cly understood

from thosr processes alone. Moreover, ❑any of the uncertainties in the

pion’s stron8 interaction had been eliminated as the contiequences of
(28)

chiral symmetry , which sin81es out the pion as a special particle,

had unfolded during the decade of the 1960’s. The possible importance

of such meson-exchange currents had been known since the 1930’s, when

Siegert(29) demonstrated that the long-wavelength El current operator

could be written in a form involving only the electric dipole operator

(calculated from the char8e d~nsity), which was shown to be ●ccurately

known in the nonrelativistic approximation. T~I’~ combination in known

●s Siegert’s theorem ●nd is the backbone of photonuclear physics,

because it allows ● simple interpretation of reactions. Magnetic

processes ●re very model dependent and aenaitive to detail~ of the

current, while Siegert’s current is not,

In what followo we will inventi8ate in some detail in the context

of the three-nucleon problem two of the nontraditional element~ we

listed ●arlier: three-nucleon forces and ❑eson-exchange currents. We

will see that both are linked to relativistic correction ●nd to each
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1.

other. Regrettably, we must leave the interesting two-body problem to

othe ra.

II. TNREE-BODYFORCES

A. Introduction

Before considering the evidence for three-body forces in nuclei,

we first discuss whether such forces exist in other systems, and hov

they ●re defined. Most of the weaker fundamental forces ~ gravitational

●nd electromagnetic, are basically two-body in ncture. The conside~a-

tions of Newton and Coulomb were based on that assumption. Is this

assumption valid? We give two answers, which we will discuss in

detail: (1) It is an excellent approximation; (2) It depends on your

point of view,

We begin with a classical example, the earth-moon system with a

small satellite orbiting the earth. We also assune, as Newton did,

that ●ach tiny particle of mass (aton) interacts with every other by

two-body forces; that is, the interaction between two such particlea is

not ●ffected by the presence of a third. This by itself is not enough

to be able to solve for the coupled motion of our clasaical system,

since there are enormouo numbers of atoms in the problem we posed, It

was Newton’s genius that allowed him to see that the interaction of

large bodies could be constructed from that of the individual tiny

pieces, after he invented the necessary mathematics! We therefore

reduce the problem to one of three macroscopic bodies interacting with

●ach other. Does the position of the moon affect the force between the

#atellite and the earth? If one neglects the tides, the answer is no,

aud the problem is simply one of 3 separate two-body forces between

composite objects. However, the tides caused by the moon affect the
(30)satellite ❑otion in ●n observable way , and the position of the moon

it clearly relevant, which means that the earth-moon satellite system

exhibits ● three-body force mediated by a deformation of the ●arth,

namely the tides. The ●ffect is very small, however.

A second ●xample of three-body forces is the atomic Axilrod-Teller

force(31). tlany-body calculations with groups of stoma ●re tradition-

ally performed by assuming ●n effective interaction between atomu,.—
rather than breakina the problem down into purely Coulombic two-body
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interactions between all the nuclei and ●lectrons in all the atoms,

which is ❑uch too complicated. Typical of two-body atom-atom inter-

actions are the long-range van der Waals force, and the Lennard-Jones

force. Having arranged the problem in this way, there will be forces

between three atoms, between four atoms, . . . , which arise from mutual

distortion. (32) The long-range three-atom force is the Axilrod-Teller

force, whose ❑ost salient feature is the strong dependence that it has

on the relative angular orientation of the atoms. This is very typical

of three-body forces, whatever their origin, aLd was a feature of our

classical example. This property will be important to us later.

We see that many three-body forces are largely a matter of

definition, rather than fundamental. In order to make calculations

tractable, we deal with the interactions of composite systems, rather

than their constituents. Although the constituents ❑ay interact via—
two-body forces, the composite objects can Interact via ●ffective

many-body forces. For our purposes we define three-nucleon forces as

those forces which depend in an irreducible way on the simultaneous

coordinates of three nucleons, when only nucleon degrees of freedom are

taken into account.

word “irreducible”.

force into two-body

●arth) and whatever

One new element appears in our definition, the

In our classical example we separated the total

forces between pairs of objects (e.g., satellite-

was left over. It is important not to confuse the

sequential interactions of two-body forces as a three-body force; that

is the meaning of “irreducible”. It is a simple concept but a com-

plicated technical matter to put it into practice
(33) , and the latter

requires much more time than we have here.

This brief introduction to a fascinating subject brings us to the

topic of interest: three-nucleon forces. The types of proceoses which

can contribute ●re illustrated in fig. 12. We ●re primarily interested

inpion-range forces, nince the pion has the lon8est ran8e (-)1/pc,

where p i- the pion mass). We hope, on the barnis of arguments to be

presented later in connection with exchaa8e currents, that the lon8eot-

range forceo will dominate. Fisure (12a) shows the generic two-pion-

●xchange three-nucleon (2n-3N) force.

the left, propagates ●nd scatters from

A n+ ia emitted by

the middle nucleon

the proton on

(the “bleb”
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represents the scattering mechanism), then turns into a no which is

●bsorbed byithe rightmost proton. The ❑any possible combinations of

pion charges means that this force has a complex isospin structure.

Because we are dealing with pions, it also has a complicated spin

structure. Moreover, the pion is not real, but virtual or “off-shell”.

Figures 12b-f are possible components of fig. 12a. The second process

is “reducible”; that is, it looks like two sequential exchanges of a

pion, ●nd hence is not fundamental. It must be discarded. Note that

this reducible graph can be cut in two without breaking anything but,

nucleon lines. The next process is similar to the classical ●xample;

the second nucleon is “deformed” into an isobar by khe pion exchange

and leads to the conceptually important isobar-meditated three-body

force. Figure 12d has an intermediate nucleon-sntinucleon pair, and

leads to a force which is conceptually the same (but not structurally)

‘34). In figs.●s the atomic Primakoff-Holstein three-electron force

12e and 12f the pion scatters from virtual meoons. The three-isobar

force shown next is a 3n-3N force, which is conceptually similar to the

Axilrod-Teller atomic force, because it ia produced by the ❑utual

distortion of three nucleons. The remaining processes can also con-

tribute to 2fi-3N and 3n-3N force~. (2)

B. Evidence

The results presented ●arlier strongly indicate that there is a

defect in binding fram conventional two-body forces. tloreover, the too

large (calculated) radii are likely a symptom of this same problem, as

we saw. There are several plausible explanations: (1) Relativistic

corrections have not been calculated; (2) Three-body forces, which

depend on the simultaneous coordinates of all 3 nucleons in the triton,

have not been included; (3) Our ❑odel Hamiltonians are simply

inadequate, and the effects of nucleon otructure or meson degrees of

freedom should be taken into ●ccount. In ~dct, these Categories are

not distinct. Relativistic corrections can be broken down into one-

body (kinetic-aner~) terms, two-bodj (potential-energy) terms, and

three-body (and higher) potential-energy tema. The size estimate we

previously made of relativistic corrections (l-few percent), taken for

the kinetic or potential energies (i50 MeV), predicts a scale of 0.5-1

HeV. Those calculations that have been performed on the one- and
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,
two-body parts are consistent with this estimate, but find a tendency

for cancellation between the attractive kinetic-energy correction and a

repulsive potential-energy correction, leaving a small residue. It iS

also known that a substantial part of the two-pion-exchange three-body

’33) of orderV~/Mea, where Vn is theforce is a relativistic correction

usual one-pion-exchange potential (OPEP). Moreover, the isobar part of

the former force shown in fig. 12c is due to nucleon substructure: a

pion ●mitted by nucleon 1 (virtually) polarizes nucleon 2 into an

isobar, which decays back to a nucleon plus ~ pion, which is absorbed

by nucleon 3. Most of the currently popular three-nucleon

forces(35-3g) have been derived by considering meson degrees of

freedom, These forces clearly ●xist in nature, but are they large

enough to solve our binding problem?

Another long-standing problem has been a good theoretical under-

standing of the ‘He charge form factor, or the Fourier transform of the

charge density. The form factor, (fig. 22, to be shown later), has a

typical diffraction shape, as a function of q, the momentum transfer,

falling rapidly through zero, becoming negative in the secondary

maximum, and then positive again. The difficulty has been that

theoretical calculations have predicted too small a (negative) strength

in the secondary maximum. The point-nucleon charge density pch(r)

construct(:d from the ●xperimental form factor Fch(q2) is consequently

much lower than theoretical calculations near the origin
(40), as shown

in fig. 13. This follows from the Fourier transform relationship

Pch(o) =—flF*12 O c@2)q2dq .
(18)

Clearly a large negative contribution to Fch lowers pch(0). The

‘2), because●rgument that we have presented is somewhat controversial

values of Fch for very large q are needed in order to make the integral

converge, and this requires considerable theoretical ●ssumptions snd

extrapolation, some of which ❑ay be dubious. Nevertheless, there is a

problem with the foxm factor, ●s we will see later.

In impulse ●pproximation the charge density ❑easures the

probability of finding ● proton ●t ● distance r from the trinucleon



centtk-of-mss, indicsted by the x in fig. 1. Taking nucleon 1 to be

that proton, we have r = ~, ●nd forcing r to zero makee y zero. This

is the condition for s11 three nucleons ●xisting in a collinear con-

figuration. Binding, on the other hand, prefers equilateral or iaos-

celets configurations, so that each nucleon can be ●ttracted by the

short-range force of each of the other nucleono. Both of our problems

with experiment could be tolvod if the three-nucleon force were

●ttractive for equilateral configurations ●nd repulsive for collinear

ones. Schematic models of the force have this structure, ●nd produce

both ●ffects, ●lthough other models may not. We note that PO, or ~0,

does not correspond to the “hole” in the wavefunction produced by the

ttrona rhort-range repulsion. The S-state component of the wave-

function for 0=0°, corresponding to ● 5-cnannel RSC potential

calculation, is shown in fig. 14. The deep valley ●t e’=30° reflects

that

Thim

wave

repuhiont while pch(o) is @VOn by an integral over x, ●long y=O.

Schr6dinSer wavefunction i- generated by the ❑uch smoother’Faddeev

function component ~~ shown in fig. 15.

In ●ddition to bound states, the trinucleons have a rich continuum

structure, At very low (ementially zero) energy the scattering of ●

nucleon from the deuteron can be characterized by ● sinale observable,

the scatterin$ lengthr a, which can be decomposed into -pin-doublet

(a2) and spin-quartet (a,’ component-. The latter is quite unin-

teresting, because it seems to depend only on the deuteron’s binding

●neqy due to the effect of the Pauli principle in the quartet state;

consequently ●ll %ali~tic” force modols produce nearly the same

remult. Calculated doublet tcatttrin~ len@hms on the other hand, have

been too larue, Typical valuas are shown in fig, 16, whra a2 has been

calculated for ● variety of realimtic ●nd unrealistic two- and

three-body force models. These rewlt~ for pd ●nd nd scattering

’42) when plotted versua theseparately fall on “Phillip- lines”

corsaspondint triton or alIe Mndint ●nergy. The fit to the nd re~ults

passes throu~h the experimental datum; the pd result doat not, which it

● mymtuy ●t this time. The fact that ●ll of the nd doublet racults

track the same Phillips line indicates that whatever physical machaninm

corrects tho bindint defect will alto produce ● correct value for a21

at leant for tho nd case.
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Finally, analyseo of the nn-scattering length, ●u, from, two

separate experiments, n+d+(n+n)+p ●nd n-+d+(n+n)+y, have produced three

(43) tbt three-nucleondifferent valueo of ●u. It ham been argued

forcem, conspicuously missina in the latter reaction ●nd not included

in the analyses of the former reaction, ❑ight produce ●greement among

the valuea of ●m from the different reactions. Only schematic

calculations have been performed to date (44).

The ●violence we have presented is tantalizing, but it is ●t bent

circumstantial, At present the beat evidence ●--ista in the properties

af the bound state. Can current models of the three-nucleon force

produce ● cubntantial increase in binding? At least four mch models

have been used recently: (1) the Tucoon-lfelbourne (TM) two-pion-

‘35); (2) the Brazilian (BR) two-pion-exchange force(36);exchange force

(3) the Urbana-Argome (UA) schematic force ‘37); (4) the Hajduk-Sauer

icobarmodel(38). Hajdukand Sauer do not explicitly includes

separate three-body force in their ❑odel, but rather include isobar

component in their wavefunctions.

implicitly included in their ❑odel,

BR models incorporate figs. 12c-12f

C. Calculations

Three-body-force contributions,

must be deduced later. The TM ●nd

into their force-,

The early calculations used different force models ●nd varioun

cpprox.tmations, which resulted in ● chaotic situation, nome calculations

finding negligible ●dditional hindina ●nd others findin more than one

tleV. The situation hat recently been clarified in part ?45? tloat

calculations had resorted to perturbation theory using S-channel wave

fumctioas(46), which fails badly. Perturbation theory is inadequ~te

for the Ttl model, giving retults which ●re much too cmall. The

5-channel wave function ●pproximation io also inadequate in general, at

‘39), because the pion-exchanse potentialnoted by Hajduk ●nd Sauer

tend to couple to small wave function components not ●d~quately

represented in tha 5-chmnal approximation; 34 channels ●re required

‘45), The latter calculation found ●pprox-for complete convergence

imatoly 1.!! fleV additional binding from both the TMand BR forces, in

combination with twe different two-body force models, Calculation- of

Pch(o) are not complet8d.
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Although these results indicate a substantial three-body force

effect, caution is requi~ed. llajduk ●nd Sauer find a mall (-.3 tleV)

three-body force effect. Their ●pproach is very different from the TM

●nd BR groups, ●nd the physical reasons for the discrepancy ●re not

known . Moreover, the “long-range” two-pion-exchanae force is unfor-

tunately quite sensitive to its short-ranse behavior, ●nd it ia

possible to substantially lower the binding by ❑aking plausible

modifications of this behavior. This field is in its infancy ●nd much

more work needs to be performed.

’47) for determining theI?inally, fig. 17 shows ● possible scheme

size of three-body forces by exploiting its ●ngular dependence in the

continuum. The initial pd configuration can be broken up into ● p+p+n

final state, which is ❑easured in an ●quilateral confi~uration (b) and

in ● collinear one (c). This very difficult experiment might shed

li~ht on such forces, by looking for the expected ●dditional ●ttraction

in the fomer configuration ●nd repulsion in the latter.

III. ELECTTWMNETIC INTERACTIONS

A. Relativistic Corrections

If relativistic effects ●re corrections (rather thsn dominant), m

‘48-49) in powers of (v/c) could prove useful inexpansion of operators

explicating the physics of various processes, The nonrelativistic

charae eperator (po) has the form

(19)

which confines the Charee ●t a point ~ to those nucleons located at ~i

with ei ● 1 (protons), rather than ei

current op~rator has two components,

■ O (neutrons), The classical -

where ei) IJi~ sit●nd ~(i) are the charae, matnotic moment (in nuclear

magnotons), momentum, ●nd (Pauli) spin operators for nucleon i, and M
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is the co-on nucleon mass. The first term is the convection current,

produced by chargea moving with velocity ~/M. The second is the

magnetization current, produced by the elementary “bar magnet~” that

●re the individual nucleons. Note the explicit factor of l/Me in each.

The currents ●re smaller than the charge by factors of I/c and l/M, ●nd

H in ● large number on the scsle of nuclear momenta.

In order to count powers of l/M ●s equivalent to powers of l/c, we

❑ust use the fact that nuclei sre weakly bound, ●nd the potential ●nd

kinetic energies (p2/21!) are nearly equal ●nd opposite. Consequently,

we e:,pect ❑omentum-(kinetic) and potential-dependent operators of the

seine order in (l/c) to be comparable. For both these reasona we reckon

potentiml energy ●s order (l!M), and thus a serier in l/Fl ir the tame

●t ● teriea in l/c. These ●re our “rules of scsle”.

Corrections to the charge operator PO (order (l/c)”) ●re of f:~fr

(29), They includel/c2, or 1/112, ● originally argued by Siegert

the spin-orbit interaction Chsrge density, the Damin-Foldy term, ●nd

varioua meson-exchange contributions, Ti!a tpin-orbit ●nd Dswin-Foldy

~term play an important role in the chmrge dentity differences of

isotopes , and the former produces ● relativistic correction to the

dipole operate:, which is the dominant such correction to deuteron

fonnrd photodisintegration. Corrections to the current operator are

of ord!r I/cs (or l/M3)P Jnd higher, They include meson-exchsnge

contributions, The scheme we have listed here, with the components of

the charge operttor being of order (1/c)O+(l/c)2+ (1/c)4+ . . . , ●nd the

current being of order (1/c)+(l/c)3+ . . . , it not the only one

pomaible, in genersl. The other possibility it for the leading-order

current to be of order (l/c)” md the charge to be of leadin~ order

(l/c). The fomer type of current, whose srchetype it the electro-

’49) clams I, while the latter itmagnetic or vector current, ir denoted

temed class 11. Doe- my simple example of the latter claim exitt?

The answer is yes snd is exemplified by the axial vector currant, which

ia importmnt in ~-decay. The Qamow-Tellar ~-decay operator is the

●xial current, ~A, andic of nonrelativittic order, (l/c)”.
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B. Current Conaewation and Exchange Currents

The nonrelativictic currente we wrote in ●qn. (20) ●re also the

mtandard currents of ●tomic physic-. They do not depend on the binding

potential. Is the same true for nuclear phymico? The ●nswer ia no,

●nd points out an important qualitative difference between nuclear ●nd

●tomic phyaica: binding in ●tomic physics is accomplished via exchange

of neutral virtual quanta (photons), while in nuclear physics ●t least

half of the bindin~ arises from the exchange of charged quanta (e.g.,

mesons), The difference is qualitative, because the ❑otion of ●ny

charged particle generates ● current in both classical ●nd quantum

physics. In ● weakly bound mystem of hewyp articles, the binding

quanta (mesons) move very rapidly compared to the nucleona, and hence

the charge is largely confined to the heavy particles. The charge

operator in eq,n. (19) simply reflects this ctatement. Meson-exchange

corrections to PO arite from nucleon recoil and the finite time of

propagation of the mesons between nucleons, ●nd tre ●t least second

order in l/c2, On the other hand, the weak binding ●rgument we

produced earlier would indicate that the nonrelativistic nuclear

current Uets large (50% to 100%) contributions from potential-dependent

currents. Thit estimate turns out to be too hi~h becaute of ●n

●ccident of nature. The bi8 exchange-current effects in the two-body

problemwe diacuaaed earlier were found in isospin-changing (isUvector)

magnetic dipole transition-, ●nd primarily involve the magnetization

current. The isovector part of that current i~ proportional to the

isovector nucleon magnetic ❑oment, p: = Pp-IJn = 4.71 n.m., whose large

sise suppressed the fractional exchan8e-currant contribution. Were p:

of “normal” sise like the isoscalar moment, p: ■ IJ + pn ❑ 0.68 n.mt ,

exchan~e-current ●ffects in nuclei would be typica!ly 50%!

The single moat importmnt theoretical aspect of electromagnetism

i~ Uauge invariance, which follows from the ❑aasleaones- of the photon.

It must be possible to make ● photon’s wave function orthogonal to the

Poyntina vector (i.e., transverse) in any frame of reference, because

the photon’s helicity is ●n observable, A Lorenta tranofomation can

●lter the photon’t wavefunctiou, however, and Usuge invariance in the

cunditian which restores tranmmrsalityt For processes which involve



only a single

equivalent to

photon, real or virtual. gauge invariance 10 exactly

conservation of the electromagnetic current, whose

components are p and ~:

*.3(st) = -i[H,p(@] , (21)

where H IS the strong interaction Hamiltonian.

If we write H = T+V, where T ●nd V ●re the kinetic ●nd potential

●nergies, ●nd u~e Isospin notation for ei = (l+~z(i))/2 in ●qn. (19),

we see that those parts of the potential between nucleona i and j which

●re isospin dependent [(~(i)”~(j))V ] will not conmnute with p, andij
hence there ❑utt be ●xchan8e or potential-dependent curr?.nts in ~ to

make current conservation possible. The strong isospin dependence of

the force Guarantees large exchange currents, ●s we previously ●rgued,

We note that the magnetization current is divergenceless (eolenoidal),

●nd the convection current satisfiem ●qn. (21) in conjunction with the

kinetic energy, T.

The ●xistence of the-e currents does not ❑ean that we can cal-

culate them. Indeed, we ●re faced with the name problem that hss

confronted nuclear physics from its beginning: without ● tractable

model of the strong interaction, we ●re able to calculate only in

perturbation theory, which does not obviously converge. Fortunately,

●n ●ccident of nature rescues us from thin dilenma, The nucleon-

nucleon interaction is strongly repulsive for small separations, ●nd

this ❑akes the probability of finding nucleons in such configurations

very UAikely. It ●lso masn~ that the ❑ttrix elements of sny nhort-

range current operators are greatly suppressed, ●nd the lougost-range

operator- should dominate, This is illustrated in fi8, 18, which

-hews the two-body trinucleon correlation function C(x), formed by

integrating lWla every and i“~. Exchan8e currents would contribute to

the around state proportional to JC(x)~(x)x2dx, The maximum value of

C(x) falls between one- ●nd two-pion-rsnae ●s iadicatad by tho srrows,

and p-me-on ranee correopondn to a very small value of C(x). Tha

additional factor of X* in the volume element further accentuates the

lona-ran~e operator-. We expect on the basio of these ●rgumenta that

the longest-ren~e currentm, the one-pion-exchanue (OPE) current-,

nhould domintte, and ●xplicit ctlculationt bear this out.
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1,

The pion’s msaa ia much smaller than that of any other ❑eson,

which ●ppeared to be accidental until the discovery of (approximate)

chiral n-try. Not only does that synnetry ●ccount for the cmall

mama, it place- conttrainta on the pion’s interactions (50) with other

hadrons, which ●llows many calculations to be performed that would

otherwise be dubious. Because OPE currents play the dominant role in

exchanse currentt, ●nd because of their past ●nd continuing importance

in our field, we derive them from “first principles” in the followin8

section.

c. One-Pion-Exchange Currents

Figure 19 ahowa the four dominant processes involving the exchange

of ● ainele pion. Fi$ure 19a depicts the OPE potential arising from n+

exchauge. In addition there are contributions from fi- ●nd no ●xchan8e,

In few-nucleon systems the OPE potential ia ●xtremely importaut, ●nd

dominates the binding; it im ●ttractive ●nd hau ● very stron~ tensor

force. Figures 19b-19d show how ● pion influences the electromagnetic

interaction of ● nucleus: the croaa ●nd wiggly line denote an external

●lectromagnetic interaction, which produces ● pion (photopion

production) on one nucleon that is later ●bsorbed by ● second nucleon.

Procesnes (b), (c), and (d] ●re the “seagull”, “true-exchange”, ●nd

“inobar” portion- of the pion-exchanga current.

Becaute of their importance, we will derive the operators corre-

sponding to fig, 19. We are only intere~ted in the nonrelativintic

portions of these processes and consequently work in the static limit

(!’l*) m The ba-ic buildin~ block we need is the pion-nucleon vertex,

j~(~), two of which comprise OPEP. Because the pion hma three charge

ctatea (n+,l’lo,n-), the vertex mu-t be an isovector, indicated by the

(iaovector) index a, Thit vertex determines the probability of ●

virtual pion, whose wave function is ~~(~), being emitted from nucleon

1 at the point ~:

(22)
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0

where

The

(23)

integrated probability of a pion of mans IJ aLd charge state a being

emitted by a nucleon which ❑eves from state i to siate f is given by

‘he ‘amiltonian ‘m’
while the various parts of the vertex operator j:

have simple physical interpretations. The 6-function reflects a locality

of the interaction; the pion can only be emitted

●t x The pion haa spin O and negative parity.
-1 “

conserved in the rntrong interaction, the vertex

sating negative-p~rity operator, and only * (the

from a nucleon located

Becaume parity is

must include a compen-

pion’s momentum operator)

is ●vailable, because we have ruled out the nucleon’s ❑omentum (we are

working in the static limit). The vertex must be Hermitian ●nd ● scalar

and the only other vector ●vailable ia ~(l), the nucleon’s spin.

Alternatively, ●qn, (23) reflects the pion’a preferred p-wave interaction

with ● nucleon. The nucleon isoapin operator ta(l) allows H~ to be

an inoapin scalar of the form ;O~n or Ia$I#. The dimensionlean coupling

constant f (f: ❑ fa/4n s 0.079) determine- the strength of the interaction

●nd the (-) si~n is conventional. We see that the ~tatic j; ia uniquely

determined by invariance (spin, parity, Isospin) ●rguments.

The other bit of physics we require is the equation of motion of

the pion field, which ●llows us to propagate ● pion from one point to

●nether, or, equivalently, to “tie together” two verhices. Thin equation

for the pion field is the usual wave equation for marsive particles,

●nd ❑irrors the analogous Maxwell equation for the electromagnetic

vector potential:

where we have ●llowed for finite propagation

violatet our static assumption ●nd we should

resulting in

(24)

time of the pion, This

neglect ●ll time dependence,
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which can be solved for

where the static pion

●-w
ho(z) •~ .

The integrated ●nergy

by nucleon 1 ●t ~ ●nd

~hift due to the exchange of a pion

(27)

being omitted

by perturbation theory:

●bsorbed by nucleon 2 at ~ is then simply given

In this exercise we have i8nored th~ nucleon wave functions

(22) because we are constructing an operator in the Hilbert

the nucleonrn, Identifying AE an the OPE potential, Vn(~l, ~,

●fter performing the integrals,

f2

%Vn(~) =—~ (?(1)*;(2)) 3(1)*? 3(2): ~(r) ,
IJ

(28)

(*) in eqn.

~pace of

● obtain

(29)

++

‘here ; ■ ‘1-X2*
The imompin dependence ia explicit ●nd in responsible

for exchan8@ currents, as we indicsted earlier. Moreover, the

derivattvea lead to the ●xtremely important tensor force.

The model-independent pion electromagnetic interactions ●re also

eamily obtained. Typically, the electromagnetic interaction v~rtices

can be obtained by means of the “minimal” substitution: ●ll fac?orn of

momentum, ~, in the strong interaction Hamlltonian are replaced by

(~-e~), where ~ ia the electromagnetic vector potential ●nd e i~ the

fundamental chsr8e. Indeed, this io the ori8in of the nucleon

convection current via the kinetic ener8y, T. We ●l-o note that the

ma8netiaation cvrrent i~ #pecial (it it solenoidal, or dlvergenceless),

and doee not follow from such argument-. In eqno. (22) ●nd (23) we



-35-

resort t~ a trick and write

and use the isospin form of ●l, which leads to

(30)

where

isG(I)= ~3(l)63(g-31)(l( l)x3n)z , (31)

●nd we have used [tz, ~0Jnl = -2i(34n)z. The electromagnetic current

operator corresponding to fi8, 19b can now be eafiily calculated in

perturbation theory ueing eqn. (26):

(32)

where

S2

@ ‘p ‘0&(l)63(@~(2)0?xho(@(~(l)x~(2))z + (1-2)
(3;)

obvious, given eqn. (31) ●nd our previouo

we simply replaced $: in ●qn. (31) by thst in ●qn.

term, because the process is not #ymnetrical in

Thi- result is quite

derivation for OPEP;

(26). There ●re two

nucleons 1 ●nd 2, unlike the OPEP case.

The remaining model-independent process in depicted in fi~. (19c),

where the fundamental pion electromagnetic vertex is Siven hy

(34)

wbare @m ~8-8$f. Up to ● sign, the form in ●lmoot obvious, since

the nucleon convection current is often written in the form:

(UJ$$,
● T The unuoual ●spect is the iao-pin dependence,

which ~a%: j~~~&ted(51) to 8iv@ ● (+) oign for the n+

interaction, a (-) sisn for the n- interaction, and O for ● X“.
,
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The true-exchange current is obtained by connecting ●ither on (s ~n) to

nucleon 1 ●nd the other one to nucleon 2; because the intera~tion is

s~etric in 1 and 2, we don’t double count this way. We find

~ex(g)=
-f2
--+(h)x~(2))z~(U ●*xho(l@)~~(2) ‘*xho(l~-E21),
P (35)

~SG(x). We also note that thiswhich has the same isospin structure as ~
(51)

process is semiclassical .

The remaining contribution is fig. 19d. Because of its complex-

ity, and the fact that it is model dependent, our derivation will be

somewhat schematic. The A-isobar is a nucleon excited state with spin

and isospin 3/2 and positive parity, which we treat as a static part-

icle. The interaction depicted in fig. 19d corresponds to the electro-

magnetic creation of the isobar and its subsequent decay by pion

emiusi-n. We have not shown the additional process with the opposite

time ordering, the electromagnetic interaction occurring last. The

transitim from 1/2+ to 3/2+ can be magnetic dipole or electric

quadruple, the latter bein8 negligible, Current operators for magnetic

dipole processes have the form

field. Asuuming that

1, the basic process

by

the electromagnetic interaction occurs on nucleon

is represented in second-order perturbation theory

where we have written the effective (nItA)-vertex as -( f/P)y*?lo;(K1)

in complete ●nalo~y with eqnt (22) (~ is the NA transition-’’spin” “’

operator, which replaces ~ in eqn. (23)), the magnetic dipole
1$3

isovector (yNA)-vertex as pvpA6 (3-~1)/2M in ●nalosy with ●qni (20))

and the energy denominator io simply the nu8ative of the A-nucleon maos

difference, .~ ■ -300 MeV@ The only complexity in eqn, (36) is the
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intermediate-state spin sum over the magnetic quantum numbers of both

spin and isospin (MA), which produces proj~ction operators in the

nucleon spin and isospin s~ace. We give these without proof; the spin-

projection operators for spin’1/2 or 3/2 intermediate states are:

(37)

; 3,2 = l.”sO - i;”l X3 /2 ,00

(38)

(39)

$ ●nd ~’ are any (vector) nuclear operators and ~ ie the nucleon spin

operator. The iaospin projection is analogous with &;. The derivation

is best performed usin8 the Wigner-Eckart theorem in a brute-force manner.

We can now easily complete the derivation, using ●qn. (39). The

second time ordering, not shown in fig. (19), is equivalent to the

Hermitian conjugate of ●qn. (36). Using this we find

3A(5)= =*(63(3-31) [ (h)x?(2))z8(W@z(2)~x]~(2)
4Mp2AM

(40)

‘~xho(y@+(l++2)) ,

where

A= (41)<@13/2 %><3/2 +l~:lf$>

is calculated for a proton (imospin component +$) with spin component

+*, using the z-component in both spin and isospin for the operators ~a

and ~A. Equation (40) is model independent in the sense that only
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●rguments have been used in its construction. The

fiAwere defined ao that thev are dimensionless, as is

A, which contains all of the model dependenc~ If we re~ort to the

quark model for the nucleon and isobar, we find

p=g ,
(42)

while the Chew-Low model of the isobar (52)
give8

Deriving eqn. (42) is an excellent

<;p = 2@5) .

This completes our derivation

final result is

(43)

●xercise (hint: <iy> =@5;

of the pion-exchange currents. The

(44)

Another very 8ood exercise iB to verify that aqn. (21) holds for~n,

with H replaced by OPEP.

D. Evidence for Exchange Currents

Most of the evidence for ●xchange currents centers on ❑agnetic

dipole processes, ●nd in particular on static and transition magnetic

moments. We have ●lready mentioned (27) the isovector ma8netic

transition between the %1 deuteron ●nd the ‘SO threshold state of the

np system. What ●bout the deuteron magnetic ❑oment? Because the

deuteron ground state is ●n isascalar system, the (isovector) exchange

currents we derived earlier do not contribute. The currents due to the

●xchanse of positive ●nd ne8ative mesons exactly cancel; this is

precisely the meanin8 of isoscalar. Only those exchange currents of

(relativistic) order (l/ca) andhi@;~ contribute. Indeed, the deuteron

magnetic moment i~ usually written in the form

(45)
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,

where the numerical value is ●xperimental, P(D) is the deuteron d-state

probability and @d is the contribution from small relativistic cor-

rections of various types. It is worth noting that relativistic

corrections have an intrinsic ambiguity built into them; different

❑ethods for calculating them give different operators. This doesn’t

mean that observable, or ❑atrix elements of these operators, are

ambiguous. They are not, because the same ambiguities are contained in

the nuclear potentials and the wavefunctions, and ●xactly cancel those

in the operator. The ambiguity is therefore nothing more than a

unita~ transformation. It causes a complication in eqn. (45),

however, since both P(D) and @d are affected by it, although the

‘21), It does make it●mbiguity in both terms can be shown to cancel

impossible to attribute any fundamental meaning to P(D); that is, it is

not measurable, and the division between the second and third terms in

●qn. (45) is artificial. Nevertheless, the scale of the corrections

(Pd-p;)/P: is -.0251, and P(D)=3.9% satisfies ●qn. (45) if we

arbitrarily set A+Jdto zero.

The trinucleons have isospin f, so that the magnetic moments can

be broken down into ●n isoscalar component (pa=p(aHe)+p(SH)) similar to

the deuter(l~ case, and an isovector component (pv=p(aHe)-p(SH)). One

finds that’53)

Pa = P: -2PD(I.1:-;) +Aps = 0.85131 ,

●nd

IJv * ‘P;[l-$pS’-~D]+@o+fWv = -5.10641 ,

(46)

(47)

where Apo is ● very small contribution from orbital ●ngular momentum,

and Aps and A+Jv represent corrections to the impulse ●pproximation. The

isoscalar part is nearly identical to the deuteron case, ●nd PD=3,8%

produces equality between impulse ●pproximation ●nd experiment, whun

A+Js vaniahes. The isovector case is rather different. Using

reasonable values of Ps’=1% ●nd PD=lO% produces Apv/p~-16.5%, compared

to &s/p;a 5,4%. The scale of the two corrections io different, ●ti is

the sisn,
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The iaoacalar discrepancy is consistent with ● (large) correction

of relativistic order, while the isovector caae in much larger, and ia

indicative of nonrelativistic ●xchan8e currents. Note that the

●b-olute tize of A#v would be comparable to the size of the impulse

0 equal to 1, which is consistent with our●pproximation, were pv

previously diacuased rules of scale for exchange currentm. The size of

the seagull part of the pion-exchange current is typically Ap~G/p~=

-(14-15)%, or most of the discrepancy. The true-exchange ●nd isobar

parts of the pionic current have opposite signs ●nd typical values

4Jv/IJ~*2%, with the upper ●nd lower signs referring to the true-

●xchange ●nd ioobar contributions, respectively. The net theoretical

result i~ slightly too small, but dramatically illustrates the

importance of pion-exchange currents.

The ●nalysis of the tritium ~-decay matrix element ia identical to

that of the iaovector magnetic moment in impulse ●pproximation. The

nuclear matrix elements ●re (l+3g~Mfi), where the superallowed Fermi

part is 1, 8A is the ●xial vector couplin8 constant, and the Gamow-

Tcller matrix element has the fom

IMAI = l-$PS--fPD+&lA= 1- 0.042(8) , (48)

(54) using our previouswhere the numerical value is experimental.

‘2) AMA=0.04(2), The ~izeofentimate of probabilities we estimate

this correction is consistent with s relativi~tic correction and our

previous ●nalysit thtt the impulse ●pproximation ●xial vector current

in class 11, ●nd has no nonrelativistic exchsn~e currentn.

Given the fact that the ❑agnetic memento are veg utron81y

●ffected by pion-exchan8e currents, we should also expect that the

magnetic form factor, or Fourier transform of the maanetizatlon

density, is aimilsrly affected. This is indicsted for ‘He in fis. 20

which nhows three calculation- by Hajduk, Sauer, and Strueve (39)

tosether with the dsta. The shape of IFma~l ●t a function of th;

momentum transfer, q, is ● typical diffraction ~tructure. The impuloe

●pproximation (no exchange currents) based on the Paris potential hat

its diffraction minimum at ❑uch too smmll a value of q. Includins the
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exchange currents (labelled ioobar model) moves the diffraction ❑inimum

out toward the experimental results, Unfortunately, theoretical

uncertainties in how to deal with the nucleon fom factors (the larae

dots in fig. (19)) in the exchange currents lead to (at leaat) three

different prescriptions,

(labelled F1 ●nd ~).

The problem is seen

in impulse ●pproximation

two of which ●re indicated in the fiaure

most clearly in the charge form fsctor, which

haa the structure

FB(q2)=

‘Ihe subscript

ig”~

Sd3r e PO(S) ● (49)

“B” indicates thtt this im the “body” form factor, the

probability that, when one nucleon ia ntruck ●nd receives momentum q,

the recoiling nucleus it capsble of reconstituting itself in the around

rotate. That probability is rather small, becwme mall momentum

components, rather thsn lsrge, sre most probable in s nucloum, which I-

why form factors ●re ●lways shown on temi-lou plots! Tha most probable

re~ction is for the struck nucleon to be ejected, But in “arsbbina”

the nucleu~ the electromagnetic interaction munt firot Srab ● nucleon,

●nd thtt does not have unit probability, but rather ~(qa)(%l), bacauae

th~ nucleon hsa ita own atructura. In ●ccordance with tccapted

probability practice one takes the product of th, probability

distributions:

Fc@2)■ ~(q2)FB(q2). (50)

In daalint with the pion-saasull ●xchtngn currontt it is not knwn

which typa of nucleon fom factor, ~, to use, the ●lactric (chsr#a)

form factors ‘48)F1 orGB, or the sxisl vector form factor, GA,

Experiment would app~ar tc pref@r F1 or GA (bothsr@ lar8er th~n %)F

but the calculation ●ra not sufficiently ummbituouc to ●now that

conclusion,

Similtr results ●ra ●vidant in th~ all masnetic form factor

tosether with new hith momantumtran~f~r data ●qerly ●waited for two

decades, Th@ dashad curve is tho impulsa ●pproximstion and tha
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solid curve includes ● variety of exchange currents. The ●greement

between theory ●nd experiment is rather Uood.

Just sn long-standing discrepancies between theory md experiment

involving thezmal np radiative capture pointed to exchange currents, so

did problem with thermal nd radiative capture (n+d+%+y), In the

latter came, the capture rate vaniahea in impulne ●pproximation if one

ammea that ●ll the forces between nucleono ●re identical. In that

limit the (s-wsve) ground rotate wavefunction is ●n ●igenfu.nction of the

magnetic moment operator, ●nd the matrix element vanishes by orthog-

onality. This ~reatly auppreaaes the doublet part of the decay rate,

which we see from eqns. (46) ●nd (47) if we drop the leading order p;-

●nd p~-termt. The remaining probabilities are now the overlaps of the

appropriate pieces of the two wavefunctions. In addition the decay can

●lso proceed from the quartet part of the nd ntate. Recent ❑easure-

mentx of the total rate wumrized in raf. 2 give a cross-section of

.51S(9) mb, 600 times amsll than the corresponding np case.
(56) have ●ntabliahedExtensive calculations by Terre ●nd Ooulard

that in impulsa approximation the quartet rate is 20 percent larger

than the doublet, The exchange currents lower the fomer by 20 percent

while r~ining the latter by 500 percent, increasing the impulse approx-

imation result of .2 mb to a total of .6 mb, in f~irly good agrtiement

with experiment, The seagull, Isobtr snd true-exchange pionic currents

contribute rouahly in the ratio 3:2:-1.

We have concentrated ●lmost ●ntirely on the long-range pionic

currentt, motivated by the shape of the correlation function. Is this

sdoquate? There are a wide variety of short-ran~e contributions, most

of which can be obtained from fit. 19 by replacing a pion propagator by

that of ● heavy maoon. Typically these contributions ●re 10-20 percent

of the pionic ones, ●t leant for small momentumtransfers, and their

calculation is much moro ❑odel depend~nt.
(55) of tHe and ~H inFinally, we show the charse fozm factors

fits. 22 ●nd 23, tog~ther with the calculations of Hajduk, Sauer, and

Struev.(39), The impulse ●pproximation and the HS isobar model for 8He

ara deficient in tha retion of the secondary diffraction maximum, The

addition of ●mbisuouo ●xchante currents of relativistic order improve~



-43-

.

the agreement. Unfortunately the “realistic” potential ❑odels which

are used to calculate wave functions don’t have the correct form to

●ccommodate relativistic correction, ●nd the cancellations which must

take place to eliminate the ●mbiguity from ❑atrix elements cannot take

place. The results for ‘H are shown together with two calculation

using different (nonstatic) models of the n-nucleon vertex (PS ●nd PV).

This model dependence partially reflects the ●mbiguity discussed ●bove.

This ia ● murky ●nd technically complex subject, which the interested
(26)

reader cm find diecussed elsewhere .

E. Sums ry

We suamarize by noting that in iaovector magnetic dipole

processes, pion-exchange currents can make sizeable contributions,

Contributions from heavy-meson exchange ●re smaller, because nucleons

don’t like to overlap at small separations. The dominant meaon-

exchange effectc occur in the i#ovector current operator, while -mall

(ambiguous) contribution can occur to the charge, isoncalar current,

●nd ●xial vactor current operatora.
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FIGURECAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6,

Figure 7,

Figure 8,

Figure 9.

Fiaure 10,

Fi~ura 11.

Fisure 12,

Figuro 13,

Jacobi coordinates (Xl,yl,el) for trinucleon problem.

Comparison of centrifugal kinetic ●nergy with the
MT-V potential (top) nnd partial-wave projected triton
correlation functions for that potential (bottom).

Configuration tipace regione for Nd scattering problem.

Faddeev wavefunction for quartet nd ecatterin~, $1, plotted
verrnua x ●nd y.

Schr6dinger wavefunction component, v , for e=O” generated
from ~1 in fig, i4, plotted versus x ● d y,

The function at the top is ●pproximated by the sum of 5
spline function- in the ❑iddle. The use of ouch aplineo
with ● second-order differential equation leadu to the
banded ❑atrix mhown at the bottom.

Schematic trinucleons with identical forces betweer protons

i
shaded) ●nd neutrons in (a) and with different forces for
He in (b) ●nd 3H in (c).

Calculated trinucleon (point nucleon) rms charge radii
decomposed into iaoscalar (a) ●nd difference (v) contribu-
tions in impulse ●pproximation, to~ether with data, plotted
versus corresponding bindina energy. The aHe calculations
contained no Coulomb force.

Calculated trinucleon S“-state percentages plotted versuo
corraspondins binding eneruy.

Calculated trinucleon (point nucleon) rms charga radii in
impulse ●pproximation, plotted versus corraspondin~ binding
energy. The ‘He calculation contained no Coulomb fores.

aHe Coulomb eneray, E , plottedHvertun the correnpondin8
hyperspherical ●pproximation, EC,

Various physical processes contributing to three-nucleon
forces. Solid, dashed, ~haded and double lines depict
nucleon-, pions, isobsrs (nucleon excited states), and
heavy metons, respectively.

~;~erimental (x’n) and theoretical char~e demitiem for
The theoretical curves correspond to includin8 or not

inciudint a Coulomb force between the protons in ‘He,
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Figure 14. The spatially symmetric (S-state) component, u, of the
Schr6dinger wave functicn from ● 5-channel RSC calculation
for e=O”, plotted versus x ●nd y.

Figure 15. The Faddeev wave function component, ~~, which generated u
in fig. 14, plotted versus x and y.

Figure 16. Doublet nd ●nd pd scat.terin8 len8tht plotted versus ‘H and
‘He binding energies, respectively. Individual points ●re
from theoretical calculations (triangles, squsres, and
circles correspond to realistic two-body force model-, the
●dditional inclusion of three-body forces, ●nd unrealistic
two-body force models).

Figure 17. Scenario for probing three-nucleon forces withpd initial
state (t) becoming ●quilateral (b) ●nd collinear (c) three-
body breakup configurations.

Figure 18. Two-body triton (iaoacalar) correlation functions for the
RSC snd AV14 potential ❑odel~, together with the ranges of
various ❑eson exchan~es.

Figure 19. One-pion-exchange processes contributing to OPEP in (a),
●nd to the OPE currents in (b)-(d).

Figura 20. ‘He magnetic form factor, togethar with 3 calculations by
Hsdjuk, Sauer, and Strueve.

Figure 21. ‘H magnetic form factor, together with 2 calculations by
Hadjuk, Sauer, md Strueve.

Figure 22. ~He charge form factor, together with 3 calculations by
Hajduk, Sauer, and Strueve.

Figura 23. ‘H char$e form factor, together with 2 calculation by
Hajduk, Sauer, and Strueve.
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